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Instructional Objectives 
 
At the end of this lesson, the students should be able to understand 
 
• Design of components subjected to low cycle fatigue; concept and necessary 

formulations. 

• Design of components subjected to high cycle fatigue loading with finite life; 

concept and necessary formulations. 

• Fatigue strength formulations; Gerber, Goodman and Soderberg equations. 

 

3.4.1  Low cycle fatigue 
This is mainly applicable for short-lived devices where very large overloads may 

occur at low cycles. Typical examples include the elements of control systems in 

mechanical devices. A fatigue failure mostly begins at a local discontinuity and 

when the stress at the discontinuity exceeds elastic limit there is plastic strain. 

The cyclic plastic strain is responsible for crack propagation and fracture. 

Experiments have been carried out with reversed loading and the true stress-

strain hysteresis loops are shown in figure-3.4.1.1. Due to cyclic strain the 

elastic limit increases for annealed steel and decreases for cold drawn steel. Low 

cycle fatigue is investigated in terms of cyclic strain. For this purpose we consider 

a typical plot of strain amplitude versus number of stress reversals to fail for steel 

as shown in figure-3.4.1.2. 
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3.4.1.1F- A typical stress-strain plot with a number of stress reversals (Ref.[4]). 

Here the stress range is Δσ. Δεp and Δεe are the plastic and elastic strain ranges, 

the total strain range being Δε. Considering that the total strain amplitude can be 

given as  

p eΔε Δε Δε= +   

A relationship between strain and a number of stress reversals can be given as  

    
'

a ' bf
f

σΔε (N) ε (N)
E

= +  

where σf and εf are the true stress and strain corresponding to fracture in one 

cycle and a, b are systems constants. The equations have been simplified as 

follows:  
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In this form the equation can be readily used since σu, εp and E can be measured 

in a typical tensile test. However, in the presence of notches and cracks 

determination of total strain is difficult. 

 

 

 

 

 

 

 

 

 

 

 

 

      

3.4.1.2F- Plots of strain amplitude vs number of stress reversals for 

failure. 

 

3.4.2  High cycle fatigue with finite life 
This applies to most commonly used machine parts and this can be analyzed by 

idealizing the S-N curve for, say, steel, as shown in figure- 3.4.2.1 . 

The line between 103 and 106 cycles is taken to represent high cycle fatigue with 

finite life and this can be given by  

    S b N c= +log log  

where S is the reversed stress and  b and c are constants.  

At  point A ( )u b c3log 0.8 log10σ = +  where σu is the ultimate tensile stress 

and at point B e b cσ = +6log log10  where σe is the endurance limit. 

Total strainElastic strain

Plastic strain

c

b

101 102 103 104 105 106

10-3

10-2

10-1

1

Number of stress reversals for failure, N

St
ra

in
 a

m
pl

it
ud

e,

'
f

E
σ

100

1

1

Δε



Version 2 ME, IIT Kharagpur 

This gives   u

e
b

σ
= −

σ
0.81 log

3
 and ( )u

e
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σ
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σ

20.8
log  

 

 

 

 

 

 

 

 

 

 

 

     
3.4.2.1F- A schematic plot of reversed stress against number of cycles to fail. 

 

3.4.3  Fatigue strength formulations 
Fatigue strength experiments have been carried out over a wide range of stress 

variations in both tension and compression and a typical plot is shown in figure- 
3.4.3.1. Based on these results mainly, Gerber proposed a parabolic correlation 

and this is given by  

vm

u e

2

1
⎛ ⎞ ⎛ ⎞σσ

+ =⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠
 Gerber line 

Goodman approximated a linear variation and this is given by  

 vm

u e
1

⎛ ⎞ ⎛ ⎞σσ
+ =⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠

 Goodman line 

Soderberg proposed a linear variation based on tensile yield strength σY and this 

is given by  
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   vm

y e

⎛ ⎞ ⎛ ⎞σσ
+ =⎜ ⎟ ⎜ ⎟⎜ ⎟σ σ⎝ ⎠⎝ ⎠

1 Soderberg line 

Here, σm and σv represent the mean and fluctuating components respectively. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4.3.1F- A schematic diagram of experimental plots of variable stress 
against mean stress and Gerber, Goodman and Soderberg lines. 

 
 
3.4.4  Problems with Answers 
 

Q.1: A grooved shaft shown in figure- 3.4.4.1 is subjected to rotating-bending 

load. The dimensions are shown in the figure and the bending moment is 

30 Nm. The shaft has a ground finish and an ultimate tensile strength of 

1000 MPa. Determine the life of the shaft. 

 r = 0.4 mm 
 D = 12 mm 
 d = 10 mm 
 

     3.4.4.1F 
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A.1: 

 Modified endurance limit, σe′ = σe C1C2C3C4C5/ Kf 

 Here, the diameter lies between 7.6 mm and 50 mm : C1 = 0.85 

 The shaft is subjected to reversed bending load:  C2 = 1 

 From the surface factor vs tensile strength plot in figure- 3.3.3.5 

 For UTS = 1000 MPa and ground surface: C3 = 0.91 

 Since T≤ 450oC, C4 = 1 

 For high reliability, C5 = 0.702. 

           From the notch sensitivity plots in figure- 3.3.4.2 , for r=0.4 mm and UTS    

= 1000 MPa, q = 0.78 

From stress concentration plots in figure-3.4.4.2, for r/d = 0.04 and D/d = 

1.2,    Kt = 1.9. This gives Kf = 1+q (Kt -1) = 1.702. 

Then, σe′ = σex 0.89x 1x 0.91x 1x 0.702/1.702 = 0.319 σe 

For steel, we may take σe = 0.5 σUTS = 500 MPa and then we have  

σe′ = 159.5 MPa. 

Bending stress at the outermost fiber, b 3
32Mσ
πd

=  

For the smaller diameter, d=0.01 mm, bσ 305 MPa=  

Since '
b eσ σ>  life is finite. 

For high cycle fatigue with finite life, 

log S = b log N + C 

 where, 
e

b σ
= −

σ
00.81 log

3 '
 = x

− =−
1 0.8 1000log 0.233
3 159.5

 

  ( )u

e
c

σ
=

σ

20.8
log

'
 = ( )x

=
20.8 1000

log 3.60
159.5

 

 Therefore, finite life N can be given by  

  N=10-c/b S1/b  if 103 ≤ N ≤ 106. 

 Since the reversed bending stress is 306 MPa, 

  N = 2.98x 109 cycles. 
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     3.4.4.4F 
 
 
 
 
 
 
 
 
 
        

3.4.4.2F (Ref.[5]) 
 
 
Q.2: A portion of a connecting link made of steel is shown in figure-3.4.4.3 . 

The tensile axial force F fluctuates between 15 KN to 60 KN. Find the 

factor of safety if the ultimate tensile strength and yield strength for the 

material are 440 MPa and 370 MPa respectively and the component has a 

machine finish. 

 

 

 

 

 

      

3.4.4.3F 
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A.2: 

 To determine the modified endurance limit at the step, σe′ = σe 

C1C2C3C4C5/ Kf where   

                      C1 = 0.75 since d ≥ 50 mm 

C2 = 0.85 for axial loading 

C3 = 0.78 since σu = 440 MPa and the surface is machined. 

C4 = 1 since T≤ 450oC  

C5 = 0.75 for high reliability. 

 At the step, r/d = 0.1, D/d = 1.5 and from figure-3.2.4.6, Kt = 2.1 and from 

            figure- 3.3.4.2  q = 0.8.   This gives Kf = 1+q (Kt -1) = 1.88. 

     Modified endurance limit, σe′ = σex 0.75x 0.85x 0.82x 1x 0.75/1.88 = 0.208  σe 

Take σe = 0.5 σu . Then σe′ = 45.76 MPa. 

The link is subjected to reversed axial loading between 15 KN to 60 KN. 

This gives 
3

max
60x10σ 100MPa

0.01x0.06
= = , 

3

min
15x10σ 25MPa

0.01x0.06
= =  

Therefore, σmean = 62.5 MPa and σv = 37.5 MPa. 

Using Soderberg’s equation we now have, 

1 62.5 37.5
F.S 370 45.75

= +    so that F.S = 1.011 

This is a low factor of safety. 

           Consider now the endurance limit modification at the hole. The endurance 

limit modifying factors remain the same except that Kf is different since Kt 

is different. From figure- 3.2.4.7 for d/w= 15/90 = 0.25, Kt = 2.46 and q 

remaining the same as before i.e 0.8 

           Therefore, Kf = 1+q (Kt -1) = 2.163. 

           This gives σe′ = 39.68 MPa.  Repeating the calculations for F.S using 

Soderberg’s equation , F.S = 0.897. 

            This indicates that the plate may fail near the hole. 
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Q.3: A 60 mm diameter cold drawn steel bar is subjected to a completely 

reversed torque of 100 Nm and an applied bending moment that varies 

between 400 Nm and -200 Nm. The shaft has a machined finish and has a 

6 mm diameter hole drilled transversely through it. If the ultimate tensile 

stress σu and yield stress σy of the material are 600 MPa and 420 MPa 

respectively, find the factor of safety.  

A.3: 
 The mean and fluctuating torsional shear stresses are  

 τm = 0 ; 
( )v 3

16x100τ
πx 0.06

=  = 2.36 MPa. 

 and the mean and fluctuating bending stresses are 

 
( )m 3

32x100σ
πx 0.06

= = 4.72 MPa;   
( )v 3

32x300σ
πx 0.06

= = 14.16 MPa. 

 For finding the modifies endurance limit we have, 

 C1 = 0.75 since d > 50 mm 

C2 = 0.78 for torsional load 

     = 1 for bending load 

C3 = 0.78 since σu = 600 MPa and the surface is machined ( figure- 

3.4.4.2). 

C4 = 1 since T≤ 450oC  

C5 = 0.7 for high reliability. 

and Kf = 2.25 for bending with d/D =0.1 (from figure- 3.4.4.5  ) 

 = 2.9 for torsion on the shaft surface with d/D = 0.1 (from figure- 
3.4.4.6 )  

This gives for bending σeb′ = σex 0.75x1x 0.78x 1x 0.7/2.25 = 0.182 σe 

For torsion σes′ = σesx 0.75x0.78x 0.78x 1x 0.7/2.9 = 0.11 σe 

And if σe = 0.5 σu = 300 MPa, σeb′ =54.6 MPa; σes′ = 33 MPa 

We may now find the equivalent bending and torsional shear stresses as: 

y
eq m v '

es

τ
τ τ τ

σ
= +  = 15.01 MPa ( Taking τy = 0.5 σy = 210 MPa) 
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y
eq m v '

eb

σ
σ σ σ

σ
= + = 113.64 MPa. 

Equivalent principal stresses may now be found as  

2
eq eq 2

1eq eq

2
eq eq 2

2eq eq

σ σ
σ τ

2 2

σ σ
σ τ

2 2

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

 

 and using von-Mises criterion 

 
2

y2 2
eq eq

σ
σ 3τ 2

F.S
⎛ ⎞

+ = ⎜ ⎟
⎝ ⎠

  which gives F.S = 5.18. 

 
 
 
 
 
 
 
 
 
 

3.4.4.5 F (Ref.[2]) 
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3.4.4.6 F (Ref.[2]) 

 

3.4.5 Summary of this Lesson 
The simplified equations for designing components subjected to both low 

cycle and high cycle fatigue with finite life have been explained and 

methods to determine the component life have been demonstrated. Based 

on experimental evidences, a number of fatigue strength formulations are 

available and Gerber, Goodman and Soderberg equations have been 

discussed. Methods to determine the factor of safety or the safe design 

stresses under variable loading have been demonstrated. 
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3.4.6  Reference for Module-3 
 

1) Design of machine elements by M.F.Spotts, Prentice hall of India,1991. 

2) Machine design-an integrated approach by Robert L. Norton, Pearson 

Education Ltd, 2001. 

3) A textbook of machine design by P.C.Sharma and D.K.Agarwal, 

S.K.Kataria and sons, 1998. 

4) Mechanical engineering design by Joseph E. Shigley, McGraw Hill, 

1986. 

5)   Fundamentals of machine component design, 3rd edition, by Robert C.  

Juvinall and Kurt M. Marshek, John Wiley & Sons, 2000. 
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